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Abstract : Numerical simulation and visualization are performed to investigate the developing processes
of flows between two concentric rotating cylinders. The length of the cylinders is finite and the end walls
are fixed. Initially the fluid is at rest, and the inner cylinder suddenly begins to rotate. Various flow
modes appear in this flow. Developments of the flow to these modes are examined and the physical
explanation for the transient process is presented. The processes are classified into some types. At low
Reynolds numbers, vortices begin to grow on end walls. When the Reynolds number is higher, the
centrifugal instability brings first vortices around the mid-plane in the axial direction. Some final modes
are established via an intermediate mode, and some other modes are attained after merging and vanishing
of vortices.

Keywords: developing process of flow, Taylor-Couette flow, impulsive start, Ekman vortex, numerical
simulation.

1. Introduction

Flow developing between a rotating inner cylinder and a stationary outer cylinder presents a major problem of a
complex system which invokes bifurcation phenomena. When the aspect ratio defined by the quotient of the
cylinder length by the gap width between cylinders is finite and the end walls of cylinders are fixed, the flow is
more realistic and it has drawn considerable interests. Benjamin and Mullin (1981), for example, conducted
experimental investigations and obtained flows of normal modes and anomalous modes. In the flow of an
anomalous mode, an anomalous cell emerges near the end wall and the flow on the end wall is not inward but
toward the outer cylinder. After their studies, researches were conducted mainly on the flow modes appearing in
the fully developed flows (Koschmieder, 1993; Egbers and Pfister, 2000), and various modes were found
experimentally and numerically (Nakamura et al., 1990; Nakamura and Toya, 1996).

The transient process of flow mode from an initial state at rest was studied from the viewpoint of the growth
of Ekman cells appearing at stationary end walls of finite cylinders. Even at the Reynolds numbers less than the
critical value for the onset of the Taylor vortex flow, the Ekman cell develops on the end wall. Liicke et al. (1984)
focused on the flow with sudden increase in the rotating velocity and investigated the penetration process of the
end-wall effect toward the mid-plane. Kuo and Ball (1997) calculated the case where the inner cylinder gradually
began to rotate and showed the way in which vortices were formed near end walls. In these studies, the aspect ratio
was not less than 10 and was not small, and the vortex which grew first was the one on the end wall. The
experimental result of the time-dependent flow (Takeda et al., 1990), on the other hand, showed no evidence that
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the Taylor vortex flow would be induced by Ekman cells, and it was not consistent with the numerical results.

The number of cells may decrease during the formation process of the Taylor vortex flow. Bielek and
Koschmieder (1990) investigated flows at low aspect ratios and determined the transient processes of flow patterns
from observations. The molecular dynamics simulation by Hirshfeld and Rapaport (1998) reported the reduction
of cells in the flow with a periodic condition in the axial direction. However, the aspect ratio and the Reynolds
number were limited and the reduction process was not shown clearly.

We focus on the practical flows with a small aspect ratio of order of unity and study the flow modes
appearing during and after the formation periods of flows. The rotating velocity of the inner cylinder suddenly
changes from zero to a prescribed constant velocity. We visualize and investigate the transitions to quasi-steady
states under various conditions, and clarify the types of the processes developing to various modes, which are
difficult to be determined by experiments.

2. Formulation

Physical parameters are nondimensionalized by the reference length which is the gap between radii of cylinders
and the reference velocity which is the maximum circumferential velocity of the inner cylinder. The radii of the
inner cylinder and the outer cylinder are r; and r,, and the gap between them and the length of cylinders are D (=1)
and L, respectively. The main parameters governing the flow are the aspect ratio G = L/D, the radius ratio h=r/r,
and the Reynolds number Re defined by the reference length and the reference velocity.

The governing equations are the equation of continuity and the Navier-Stokes equations in the cylindrical
coordinate system (r, g, z) shown in Fig. 1:

a- u=0, )
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where u is the velocity vector with the radial, circumferential and axial components u, v, w, and ¢ is time and p is
pressure. The pressure correction method is based on the Poisson equation

p=-L g g, 3)

where D is the divergence of u and the viscous terms are neglected.

Fig. 1. Coordinate system.

The equations are discretized by the finite difference method. The convection terms are formulated by the
secondary upwind scheme and other terms are represented by the central difference method.

The values of the velocity components in the initial condition are zero in the entire flow region. At time ¢ =
0, the inner cylinder suddenly begins to rotate at a constant speed. The end walls of cylinders and the outer
cylinder are not rotating and fixed. The boundary condition of the velocity components is the non-slip condition.
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For the pressure Poisson equations, the Neuman condition which is evaluated from the pressure terms of
momentum equations is used. The Poisson equations are usually solved by SOR, and ILUCGS is used when the
reasonable convergence of the iterative method is not expected.

For the visualization of flows, Stokes'’s stream function Yy defined by

__ Loy _ Loy
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and the average of the kinetic energy in the meridional section with an area 4, which is given by

S N
E= A.[ 2udrdz, (5

are introduced, where S is the integral region.

In this study, the radius ratio h is 0.667. The bulk of the results are obtained by the axisymmetric
simulation, and some predictions are performed by the three-dimensional simulation in order to confirm the
numerical results.

3. Results

3.1 Transient Developments of Flow Patterns

The main modes of the Taylor vortex flow are the primary mode, secondary normal mode and second anomalous
mode (Koschmieder, 1993). The primary mode is the mode which appears first when the rotation speed gradually
increases from rest, and it has an even number of cells. The flow is slowed down by the presence of the end wall
and the retarded flow causes a normal cell which has an inward flow in the region adjacent to the end wall. The
secondary normal mode has normal cells near end walls, but the number of cells is different from the one found in
the primary mode. In the secondary anomalous mode, anomalous cell(s) appears on either or both end walls, and
the number of cells is even or odd. Near the end wall, the anomalous cell has a flow directed outward which is
opposite to the flow in the normal cell.

Figure 2 shows the time development of streamline plots (contours of ) of the flow at the aspect ratio 3.0
and the final Reynolds number 100. The value of Yy is zero on the walls, and the warm color and cold color
represent positive values and negative values, respectively. The rotating inner cylinder is on the left side and the
stationary outer cylinder is on the right side, and the upper and lower boundaries are end walls at rest. First cells
form on the end walls. They gradually grow, and finally the two-cell mode appears.
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Fig. 2. Flow developing from end wall regions (G = 3.0, Re = 100).

Figure 3 illustrates the transition process to the anomalous four-cell mode at G= 4.0 and Re = 500. Att=
10.4, a pair of cells with outward flow between them grows around the mid-plane, and weak Ekman cells appear on
end walls. Then some interior cells are induced. The Ekman cells are collapsed and the anomalous eight-cell
mode is established (£ =29.0). The cell just below the mid-plane and the lower dominant cell approach each other
and they merge into one cell, and so do the cell just above the mid-plane and the upper dominant cell (¢ = 49.8).
The merged cell overlaps a small cell (¢ = 55.0), and the mode changes to the final four-cell mode.
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Fig. 3. Flow development with overlapping cells around mid-plane (G = 4.0, Re = 500).
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Fig. 4. Flow development with decaying cells around mid-plane (G = 3.8, Re = 300).
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Fig. 5. Flow development with overlapping cells around end walls (G = 2.8, Re = 800).

Some cells may decay before the final mode is established. Figure 4 shows the transition at G = 3.8 and
Re =300. First, four cells appear on end walls and around the mid-plane. Other cells are induced and the six-cell
mode is formed (= 22.0). Then four cells around the mid-plane in the axial direction gradually decay and the final
flow of the two-cell mode appears.

Figure 5 shows the transition during which the cells on end walls merge with other cells. After the first
cells appear around the mid-plane, the normal six-cell mode emerges (¢ = 215.1). Then the Ekman cells on end
walls grow and they merge with interior cells which have the same sign of y (f = 227.1, 231.9). The merged cells
overlap and collapse the cells with the opposite signs, and the final mode of the normal two cells is obtained.

The anomalous mode appears when the Ekman cells on end walls decay before the final mode is
established. Figure 6 shows the transition at G = 3.8 and Re = 500. The first major cells emerge around the mid-
plane and ten-cell mode appears, where the cells on end walls are too weak to be observable in the figure (¢ = 34.8).
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Then the dominant cells merge with the cells around mid-plane and collapse the cells with opposite signs of Y.
After the six-cell mode forms (# = 56.4), the Ekman cells on end walls decay. The final mode of the flow is the
anomalous four-cell mode in which the anomalous cells appear on end walls. An anomalous cell has two extra
cells: one is between the inner cylinder and the end wall, and the other is between the outer cylinder and the end
wall (Nakamura and Toya, 1996; Watanabe and Furukawa, 1999). The extra cells result from the decayed Ekman
cell which is divided by the cell growing from the interior region.
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Fig. 6. Flow development with decaying cells on end walls (G = 3.8, Re = 500).
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Fig. 7. Contours of axial velocity component in radial plane (G = 3.0, Re = 300, r — r;= 0.025).
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Figure 7 shows the time variation of the contours of the axial velocity component in the radial plane (g, z),
which are obtained by the three-dimensional calculation. The upper and lower boundaries correspond to the end
walls, and the axial direction z is vertical. The aspect ratio G is 3.0 and the Reynolds number Re is 300, and the
radial section is at » — r; = 0.025. The first cells appear on the end walls (r = 11.3), and the six-cell mode is formed
at an intermediate state (¢ =47.2). Then the cells around the mid-plane disappear, and the final flow has the normal
two-cell mode (¢ = 73.3). The profiles are almost constant in the circumferential direction. At higher Reynolds
numbers, asymmetric patterns appeared during the transient processes, even though the final mode flows were
practically axisymmetric.

3.2 Mean Energy

Time variations of the mean kinetic energy £ are shown in Fig. 8. The initial flow is at rest, and the energy
suddenly increases from zero. The energy of the flow at the aspect ratio 3.0 and the Reynolds number 100 grows
monotonically and reaches its plateau after a small overshoot of its value. At G =4.0 and Re = 500, a peak of value
appears in the profile while the merged cells overlap weak cells and the eight-cell mode changes to the four-cell
mode. In the flow at G = 3.8 and Re = 300, some cells disappear around the mid-plane. At the time when almost
all the decaying cells disappear and the Ekman cells grow rapidly, the energy profile has its maximum. At G=2.8
and Re = 800, the energy fluctuates before the final mode is established. We observed that the sizes of the major
cells increased or decreased during the fluctuation of the energy. However, no correlation between the energy
profile and the flow pattern was found. The flow at G = 3.8 and Re = 500 has the maximum of the energy when the
Ekman cells are almost collapsed and the interior cells grow rapidly. In the present calculation, the energy peaks
during transitions appeared when the final modes were almost established.
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Fig. 8. Time variation of mean kinetic energy of the flows shown in Figs. 2-6.

4. Discussion

There are two major groups of developing processes. In the first group, the Ekman cell formed by the secondary
flow on the end wall grows first. In the second group, a pair of cells first grows around the mid-plane. An
experimental evidence suggests that the Ekman cells from the end walls do not invoke Taylor vortex flow and, as
the centrifugal effect grows, the radial flow dominates before the secondary flow on the end wall gains strength
(Takeda et al., 1990). As shown in Figs. 3-6, the result of the present calculation supports the experimental
observation.

Flows in the second group are further classified according to the reduction way of the number of cells just
before the final mode appears. The number of cell decreases when a dominant cell overlaps and collapses a small
cell or when a weakening cell decays. The rough sketch of the decreasing process of the cell number is shown in
Fig. 9. It represents the contour of stream function in the meridional section. The dominant cell and the vanishing
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Fig. 9. Reduction of number of cells.
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cell are side-by-side, and the rotating directions of them are opposite to each other. Figure 9(a) shows the process
in which the dominant cell overlaps the vanishing cell and then collapses it. Figure 9(b) exhibits the way in which
two co-rotating cells merge into one cell, and the small cell is overlapped and collapsed by the merged cell. Figure
9(c) shows the process in which the small cell decays and the dominant cell further grows. Hereafter, the reduction
of the number of cells shown in Figs. 9(a) and (b) is called an overlapping reduction, and the cell reduction in Fig.
9(c) is called a decaying reduction.

The types of developing process are summarized in Table 1. In this table, an integer n represents a normal
n-cell mode and An denotes an anomalous n-cell mode. In the present study, the developing processes of flows
have six types:

Type 1: The first dominant cell which appears after the sudden start of rotation is the Ekman cell on the end
wall of cylinders. As the Ekman cell grows, some cells are induced from the region near the end
wall to the region around the mid-plane, and the number of cells increases monotonically. The
Ekman cell has the inward flow near the end wall, and the final flow mode is normal.

Type 2: Before the final mode is attained, the overlapping reduction occurs around the mid-plane.

Type 3: Before the final mode is attained, the decaying reduction occurs around the mid-plane.

Type 4: Before the final mode is attained, the Ekman cell on the end wall is overlapped and collapsed.

Type 5: Before the final mode is attained, the Ekman cell on the end wall weakens and it divides into extra
cells.

Type 6: The reduction of the cell number occurs neither around the mid-plane nor on the end wall.

Table. 1. Types of flow development.

[ Type
goo[ 2 [ 2 AalaalAd[Aaa] 266 6] 6
700 2 | A4l A4l 2 [A4lAa[ A4l 6 [ 6] 6] 6] [ Type2
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soo[ A4l A4| 2 | 2 [Aal a4l a4] 6 [2[A6l 6| [ Types
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20020 2T 212121 2 el el ele
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283032343840424446 48 5.0
r D Type6

Types 1-5 correspond to the flow developments shown in Figs. 2-6, respectively. The flow of Type 1 appears at
relatively small Reynolds numbers. The flow of Type 6 is not clearly classified into Types 1-5 by our calculation.

5. Conclusion

The developing process of flow between two concentric rotating cylinders has been examined, and the developing
processes of flows, which are difficult to investigate experimentally, have been clarified by the visualization of
numerical results. The length of cylinder is finite and the inner cylinder suddenly starts to rotate. While the
Ekman cells on end walls appear first at low Reynolds numbers, the cells formed by the centrifugal effect emerge
first at higher Reynolds numbers. The formation processes to the final modes are classified into five types
according to the position where first cell appears, the way of the reduction of the number of cells (overlapping or
decaying) and the position where the reduction of the cell number occurs. When an anomalous mode appears, the
Ekman cell on the end walls is divided by the cell growing from the mid-plane side, and the divided cells remain as
extra cells on the end walls.
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